Какая Влажность Пшеницы Допустима

Хранение зерна. Влияние влажности и температуры. Сушка.

Дыхание зерна

При хренении зерна, вследствие расхода сухого вещества зерна на дыхание, вес хранящегося зерна постоянно уменьшается. При хранении 1 тонны зерна 30%-ной влажности в хранилище при 18 С в течение суток теряется около 1 кг веса зерна. Правильно организованное хранение зерна должно быть направлено к максимальному снижению трат сухого вещества и, следовательно, достижению возможно низкой убыли веса зерна в процессе хранения.

Зерно — живой организм с большим запасом питательных веществ, который проявляет жизнь дыханием, происходящим за счет содержащихся в зерне углеводов. Если зерно хранят при низких температурах, то дыхание его почти полностью прекращается. Процесс дыхания в общей форме может быть выражен уравнением

В результате биохимических процессов, происходящих при хранении, идет разложение части органического вещества зерна на дыхание с выделением углекислоты и воды, причем часть имеющейся воды вновь поглощается зерном.

Важнейшими факторами определяющими энергию дыхания зерна являются его влажность и температура. Интенсивность дыхания сильно возрастает при повышенной влажности и температуре. При уменьшении влажности до воздушно сухого состояния (10 — 12 %) дыхание практически прекращается.

В таблице приведены показатели пшеничного и ржаного зерна различной влажности (при температуре 25 С), по данным Кретовича.

Таблица 18. Изменение дыхательной активности зерна в зависимости от влажности.

Влажность зерна в %

100 г за 24 часа

Дыхательный коэффициент СО22

поглощают О2 в мг

выделяют СО2 в мг

Пшеница Гордеиформе 432 10,6 0,26 0,41 1,58 14,6 0,33 0,69 2,09 15,7 0,27 0,73 2,70 16,8 2,12 2,52 1,18 17,7 7,25 7,01 0,97 17,8 7,84 8,04 1,02

Пшеница Мультирум 321 14 ,4 0,07 0,27 3,86 16,0 0,33 0,42 1,27 17,0 1,99 2,22 1,11 17,6 6,21 5,18 0,83 19,2 8,90 8,76 0,98 21,2 17,73 13,04 0,73

Рожь Новозыбковская 14,4 0,16 0,25 1,56 15,3 0,22 — — 16,7 1,12 1,45 1,29 17,8 5,42 5,76 1,06 20,6 24,58 20,04 0,81

Из данных таблицы 18 можно заключить, что резкое усиление энергии дыхания пшеничного и ржаного зерна начинается при завышении влажности сверх 15%. Вода, содержащаясяв в зерне, При этой влажности прочно связана с коллоидами зерна и поэтому не может явиться растворителем и той водной средой, которая необходима для протекания биохимических реакций.

На рис. 13 показано дыхание пшеничного зерна, а на рис. 14 — проса различной влажности.

Из обоих рисунков видно, что при влажности зерна менее 15—16% дыхательные коэффициенты несколько больше единицы, так как в зерне нормальной влажности происходит не только нормальное аэробное, но и анаэробное дыхание.

Энергия дыхания сильно возрастает при повышении влажности и температуры, что подтверждают данные таблице 19, в которой показано количество миллиграммов СО2, выделяемое при хранении 1 кг ячменя в сутки.

Таблица 19. Энергия дыхания зерна в зависимостн от влажности

Выделение СО2 в мг при температуре

Влажность в %
15 1 8 30 40 52
От 10 до 12 0,35 0,35
Ог 14 до 15 1,40 1,40 7,50 20-40 249
От 19 до 20 3,59 125-359
33 700,00 2021

Из данных табл. 19 видно, что на интенсивность дыхания в большей степени влияет повышение влажности, чем повышение температуры, хотя повышение температуры вызывает увеличение энергии дыхания. Энергия дыхания достигает максимума при 55 градусах (рис 15). Усиленное проветривание также увеличивает энергию дыхания.

На рисунок 16 показано количество СО2 выделенное 1 кг ржи разной влажности, хранившейся в течение 28 суток при различных температурах.

Следует отметить, что повышение температуры с 19 до 31 градусах увеличивает количество выделяемой СО2 при влажности 16,9% в 4 раза (с 1699 до 6711 мг), а увеличение влажности с 12,8 до 19,3% при 19 градусах Цельсия усиливает интенсивность дыхания в 155 раз (с 38 до 4383 мг),

При влажности зерна 20% интенсивность дыхания в 3 раза больше, чем при 35%, причем самодыхание начинает проявляться лишь при 8°, оно заметно при 10°, затем интенсивность его быстро возрастает и при 20° оно в 4 раза больше, чем при 10°.

Считают, что критическая влажность, при которой резко увеличивается интенсивность дыхания, составляет для ржи и пшеницы 13—14% для ячменя и овса 14—15%. Мелкие зерна дышат сильнее крупных, богатый азотом ячмень сильнее, чем бедный, щуплое к битое зерно дышит более энергично, чем нолное и целое.

Необходимо обратить внимание на то, что усиленное дыхание вызывает значительное выделение не только СО2, но и воды, и так как зерно — плохой проводник тепла, то при сильном дыханни зерна наблюдается значительное повышение температуры. Последнее в свою очередь увеличивает интенсивность дыхания и вызывает дальнейшее повышение температуры. Одновременно начинается процесс прорастания зерна. Процесс траты органического вещества вследствие интенсивного дыхания может, таким образом, продолжаться без дальнейшего поступления влаги и тепла.

Наряду с дыханием в сильно влажном зерне проявляется жизнедеятельность вредных микроорганизмов, под влиянием которых зерно гниет и делается затхлым. Затхлое и сгнившее зерно — плохое сырье для производства спирта. Выход спирта из такого зерна понижается вследствие уменьшенного содержания крахмала и сахара в зерне, а также от того, что появляющиеся в зерне продукты гниения препятствуют нормальному протеканию процесса брожения.

На основании изложенного можно прийти к выводу, что лучшие условия хранения — это низкие температуры (лучше всего 0 — 5 ) и возможно меньшая влажность зерна.

При отсутствии доступа кислорода к зерну происходит анаэробное, так называемое интрамолекулярное дыхание, в процессе которого образуются углекислота и этиловый спирт:

Интрэмолекулярное дыхание может продолжаться до тех пор, пока накопляющиеся вредные продукты разложении плазмы его окончательно не подавят. При последующем доступе кислорода может восстановиться нормальное дыхание клетки, которое разрушает образовавшиеся в результате интрамолекулярного дыхания продукты расщепления.

Сущность порчи зерна состоит в распаде органического вещества вследствие усиленного дыхания и активирующего влияния на него окислительных ферментов — оксидаз и пероксидаз. Вначале распаду подвергаются углеводы, а затем и белки, из них в первую очередь — высокомолекулярные белковые вещества, от которых зависит способность зерна к прорастанию. При разложении белков зерна образуются продукты распада входящих в состав белковой молекулы аминокислот жирного и ароматического ряда. В зависимости от температуры и влажности окружающей среды всхожесть зерна может увеличиваться или уменьшаться. Ниже, приведены предельные соотношения между влажностью зерна (пшеницы) и температурой.

Температура , С -20 -15 -10 -5 5 10 15 20 30 40 50 60 70 80 90 100 110
Содержание воды в % 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 3 1

Таким образом, при -10 С зерно может потерять влагу не ниже 18%, при +20 С влажность его может понизиться до 12%. Всю влагу зерно может потерять лишь при 110 С.

Нарушение соотношения между температурой и процентным содержанием воды вызывает отдачу или поглощение влаги из окружающего воздуха и изменение содержания воды в разных слоях хранящегося зерна. Если, например, зерно влажностью 16% сложено на хранение при температуре 15 С, то влажность его может понижаться до 13%; внутренние слои будут высыхать и отдавать воду окружающему воздуху, насыщая его парами воды. При соприкосновении воздуха помещения с холодными стенами и крышей помещения или более холодными струями воздуха может произойти конденсация паров, которые в виде росы осядут на верхние слои зерна и вызовет в них сначала усиленное дыхание, затем прорастание, а при высокой влажности — даже порчу. Отсюда видно, что вода перемещается в зерне вследствие внутренних процессов, происходящих при дыхании зерна, и под влиянием внешних условий окружающей среды. Кроне того, возможно увлажнение зерна вследствие его гигроскопичности и адсорбции воды на зерне. Гигроскопичность зерна связана с наличием химических соединений жадно притягивающих водяные пары и затем постепенно их усваивающих. Адсорбция вызывается поверхностными силами на оболочках зерна. Гигроскопичностью обусловливается поглощение влаги, а адсорбцией — поглощение, всех газообразных веществ,

Разница в величине поглощения зерном воды в парообразном и капельножидком состоянии (в процентах к весу зерна в воздушно сухом состоянии) характеризуется следующими данными.

Зерно Газообразная вода Капельножидкая вода
Ячмень 8,2 48,2
Просо 8,6 25,0
Овес 5,5 59,8
Кукуруза 6,7 44,0
Рожь 5,1 57,7
Пшеница 5,7 45,6

Как видно из этих данных, зерно может поглотить в 3—10 раз парообразной воды, чем капельножидкой, в количестве, недостаточном для прорастания. При суточной перемене температуры днем и ночью имеет место выпадение росы (капельножидкой воды), за счет которой влажность зерна может сильно увеличиваться.

В результате биохимических процессов, происходящих при хранении, идет разложение части органического вещества зерна на дыхание с выделением углекислоты и воды, причем часть имеющейся воды вновь поглощается зерном.

Вследствие расхода вещества зерна на дыхание вес хранящегося зерна уменьшается. При хранении 1 тонны зерна 30%-ной влажности в хранилище при 18 С в течение суток теряется около 1 кг веса зерна. Правильно организованное хранение зерна должно быть направлено к максимальному снижению трат сухого вещества и, следовательно, достижению возможно низкой убыли веса зерна в процессе хранения.

Зерно — живой организм с большим запасом питательных веществ, который проявляет жизнь дыханием, происходящим за счет содержащихся в зерне углеводов. Если зерно хранят при низких температурах, то дыхание его почти полностью прекращается. Процесс дыхания в общей форме может быть выражен уравнением

Сохранность и качество зерна: определяем влажность при хранении

Влажность — основополагающий показатель для высокой сохранности зерна. Даже не значительное превышение этого показателя приводит к неминуемой порче зерновой массы. Поэтому, крайне важно точно и своевременно определять влажность при закладке зерна на хранение.
Заготовители зерна широко используют этот параметр для занижения качества и снижения закупочной цены. В условиях снижения экспорта российского зерна в 1916 – 1917 годах и как следствие падения закупочных цен для зернопроизводителей, особенно важно точно и своевременно научится исследовать показатели влажности, как одного из основных качественных параметров зерновой массы.
Систематическое определение влажности зерна является необходимым условием правильной организации процесса его послеуборочной обработки и хранения. Влажность определяют во всех поступивших партиях зерна. На основании анализа устанавливают необходимость и режимы сушки зерна. В процессе сушки влажность зерна определяют каждые 2 ч, а при налаживании режима обработки — через 1ч. На основании данных об изменении влажности зерна при сушке рассчитывают производительность сушилок.
Влага зерна – это наиболее важный и надежный фактор регулирования жизнедеятельности зерновой массы, применяемый в практике работы с зерном. Влага в зерне является средой, в которой протекают все жизненные процессы. Дыхание очень сухого зерна ничтожно мало и не всегда фиксируется приборами.
Увеличение влажности активизирует ферментные системы и усиливает обмен веществ. Однако, интенсивность дыхания зерна возрастает при этом не прямолинейно, а по кривой, имеющей переломную критическую зону. Первые порции влаги, поглощенные сухим зерном, усиливают дыхание незначительно. При достижении зерном определенного уровня влажности (для большинства зерновых культур это около 15%) интенсивность дыхания резко возрастает. Влажность, при которой это происходит, получила название критической. Дальнейшее увлажнение зерна вызывает усиление дыхания со все возрастающей скоростью.
Понятие о критической влажности является основополагающим в теории и практике хранения зерновых масс. Критическая влажность характеризует глубокое качественное изменение состояния влаги в зерне. В докритическом диапазоне влажности, вплоть до 14 % (у основных зерновых культур), вся вода в зерне настолько прочно удерживается коллоидными веществами и. активными центрами поверхности микрокапилляров, что утрачивает свойства растворителя и не может обеспечить благоприятные условия для ферментативного гидролиза органических веществ, т. е. дыхания. Вся влага у такого зерна находится в связанном состоянии, и оно характеризуется как сухое зерно. Зерно основных зерновых культур считают сухим, если его влажность не превышает 14 %, у льна 11 %, у подсолнечника 7%.
Не менее важным в объяснении особой роли критической влажности зерна является тот факт, что на сухом зерне не могут развиваться микроорганизмы, которые являются основным фактором его порчи при хранении.
Таким образом, критической влажности соответствует такой уровень влажности зерна, при котором в нем появляется свободная вода, резко усиливается интенсивность дыхания, становится возможным повреждение микроорганизмами. Следовательно, чтобы защитить зерно от быстрой порчи, обеспечить его надежную длительную сохранность, необходимо как можно быстрее после уборки обеспечить его просушку до влажности ниже критического уровня, т. е. до сухого состояния.
Критическая влажность неодинакова у зерна разных культур. Как и в случае с равновесной влажностью, она в большой степени зависит от химического состава зерна. Чем больше содержится жира, неспособного удерживать влагу, тем ниже уровень критической влажности зерна, и чем больше содержание белка и крахмала, тем выше величина критической влажности.

Рекомендуем прочесть:  Как Подсушить Пряники

Критическая влажность зерна пшеницы, ржи, ячменя находится в пределах 14,5. 15,5 %, у высокомасличного подсолнечника она 7. 8 %. У гороха 15. 16 %. Если не учитывать содержание жира и провести расчет только на гидрофильную часть зерна или семян, критическая влажность будет почти во всех случаях близка к 15 %. Такое же единство прослеживается при сопоставлении критической и равновесной влажности.
Для большинства сельскохозяйственных культур оказалось, что критическая влажность соответствует равновесной влажности зерна, устанавливающейся при 75 %-ной относительной влажности воздуха. Поэтому хранение или активное вентилирование зерновых масс воздухом с относительной влажностью ниже 75 % способствует повышению стойкости материала. Более надежно в таких случаях брать за ориентир влажность воздуха 65. 70 %. Это обусловлено тем, что в атмосфере такого воздуха зерно и семена становятся сухими, т. е. не имеют свободной влаги. При влажности окружающего воздуха выше 70 % возможно увлажнение сухой зерновой массы и ухудшение ее сохранности. Таким образом, сопоставляя фактический уровень влажности зерна с критической влажностью для данной культуры, можно установить пригодность каждой конкретной партии к хранению, или необходимость его подсушки и охлаждения.
Влагу удаляют высушиванием навесок размолотого зерна в электрических сушильных шкафах при температуре 130 °С в течение 40 мин (по ГОСТ 13586.5-85 – в течение 60 мин ) и последующим охлаждением в осушенном эксикаторе. По разности массы навесок зерна до и после высушивания рассчитывают его влажность.
Из пробы зерна, выделенной для определения влажности и помещенной в банку с крышкой или в бутылку, отделяют 20 г зерна и размывают его на лабораторной мельнице в течение 30…60 с. Крупность помола должна обеспечивать проход полученного шрота через проволочное сито с ячейками Ø 0,8 мм не менее 50 % и остаток на сете с ячейками Ø 1 мм – не более 5 %. Размолотое зерно помещают в банку с притертой крышкой и тщательно смешивают. Затем отбирают две навески размолотого зерна в предварительно взвешенные бюксы и отвешивают точно по 5 г. Навески можно брать непосредственно из мельницы. Открытые бюксы с размолотым зерном (крышку используют как поддон) помещают в заранее разогретый сушильный шкаф температура снова поднимется до 130°С, фиксируют начало высушивания. Через 60 мин бюксы с навесками вынимают из шкафа щипцами, закрывают крышками и переносят в эксикатор на 15…20 мин до полного охлаждения. Затем бюксы взвешивают и по разности массы до и после высушивания определяют влажность зерна. Все взвешивание проводят с точностью до 0,01 г. Если навеска равнялась точно 5 г, влажность в процентах получают умножением массы испарившейся влаги на 20. Например, в процессе высушивания испарилось воды в первом бюксе 0,42 г, во втором 0,40 г. В этом случае влажность навесок зерна будет 0,42*20=8,40% и 0,40*20=8,00%, средняя влажность анализируемого зерна составит 8,2%.
Если влажность зерна более 18%, его трудно размалывать, увеличивается время размола, возрастают потери влаги на испарение. В таких случаях влажность зерна определяют методом с предварительным подсушиванием. Для этого отвешивают 20 г испытуемого зерна, помещают его в неглубокую чашку Ø 8…10 см или сетчатые бюксы и подсушивают в сушильном шкафу при температуре 105°С в течение 5…10 мин, после чего охлаждают в открытой чашке и взвешивают. Полученное зерно размалывают, отбирают от него две навески точно по 5 г и высушивают, как описано выше (при температуре 130°С, 40 мин). Влажность (%) зерна определяют по формуле

Влажность — основополагающий показатель для высокой сохранности зерна. Даже не значительное превышение этого показателя приводит к неминуемой порче зерновой массы. Поэтому, крайне важно точно и своевременно определять влажность при закладке зерна на хранение.
Заготовители зерна широко используют этот параметр для занижения качества и снижения закупочной цены. В условиях снижения экспорта российского зерна в 1916 – 1917 годах и как следствие падения закупочных цен для зернопроизводителей, особенно важно точно и своевременно научится исследовать показатели влажности, как одного из основных качественных параметров зерновой массы.
Систематическое определение влажности зерна является необходимым условием правильной организации процесса его послеуборочной обработки и хранения. Влажность определяют во всех поступивших партиях зерна. На основании анализа устанавливают необходимость и режимы сушки зерна. В процессе сушки влажность зерна определяют каждые 2 ч, а при налаживании режима обработки — через 1ч. На основании данных об изменении влажности зерна при сушке рассчитывают производительность сушилок.
Влага зерна – это наиболее важный и надежный фактор регулирования жизнедеятельности зерновой массы, применяемый в практике работы с зерном. Влага в зерне является средой, в которой протекают все жизненные процессы. Дыхание очень сухого зерна ничтожно мало и не всегда фиксируется приборами.
Увеличение влажности активизирует ферментные системы и усиливает обмен веществ. Однако, интенсивность дыхания зерна возрастает при этом не прямолинейно, а по кривой, имеющей переломную критическую зону. Первые порции влаги, поглощенные сухим зерном, усиливают дыхание незначительно. При достижении зерном определенного уровня влажности (для большинства зерновых культур это около 15%) интенсивность дыхания резко возрастает. Влажность, при которой это происходит, получила название критической. Дальнейшее увлажнение зерна вызывает усиление дыхания со все возрастающей скоростью.
Понятие о критической влажности является основополагающим в теории и практике хранения зерновых масс. Критическая влажность характеризует глубокое качественное изменение состояния влаги в зерне. В докритическом диапазоне влажности, вплоть до 14 % (у основных зерновых культур), вся вода в зерне настолько прочно удерживается коллоидными веществами и. активными центрами поверхности микрокапилляров, что утрачивает свойства растворителя и не может обеспечить благоприятные условия для ферментативного гидролиза органических веществ, т. е. дыхания. Вся влага у такого зерна находится в связанном состоянии, и оно характеризуется как сухое зерно. Зерно основных зерновых культур считают сухим, если его влажность не превышает 14 %, у льна 11 %, у подсолнечника 7%.
Не менее важным в объяснении особой роли критической влажности зерна является тот факт, что на сухом зерне не могут развиваться микроорганизмы, которые являются основным фактором его порчи при хранении.
Таким образом, критической влажности соответствует такой уровень влажности зерна, при котором в нем появляется свободная вода, резко усиливается интенсивность дыхания, становится возможным повреждение микроорганизмами. Следовательно, чтобы защитить зерно от быстрой порчи, обеспечить его надежную длительную сохранность, необходимо как можно быстрее после уборки обеспечить его просушку до влажности ниже критического уровня, т. е. до сухого состояния.
Критическая влажность неодинакова у зерна разных культур. Как и в случае с равновесной влажностью, она в большой степени зависит от химического состава зерна. Чем больше содержится жира, неспособного удерживать влагу, тем ниже уровень критической влажности зерна, и чем больше содержание белка и крахмала, тем выше величина критической влажности.

Какая Влажность Пшеницы Допустима

Влажность зерна – один из наиболее важных показателей его качества, который определяют сразу же после приема. Вода оказывает сильное влияние на само зерно и микроорганизмы на его поверхности. На влажном зерне быстрее развиваются микробы, увеличивается число клещей, насекомых, происходят другие изменения.

Влияние влажности на качество зерна
Влажность – фактор, показывающий долю питательных веществ зерна и длительность его хранения. Чем выше содержание влаги в зерновой массе, тем меньше она содержит питательных веществ и тем быстрее портится. Чрезмерное количество влаги приводит к активации физиологических, физико-химических процессов. Зерно начинает набухать, прорастать, расщепляются высокомолекулярные биополимеры, активизируются ферменты. Снижается натура, сыпучесть зерна, оно становится уязвимым для механических повреждений. Если влажным зерно остается на длительный срок, его хранение и обработка становятся невозможными. В любом случае, выход зерна и качество продукции при использовании влажного сырья снижаются.

Содержание воды в зерне: связанная и свободная влага
Из сказанного выше очевидно, что для улучшения качества зерна и облегчения его переработки необходима сушка. Эту процедуру проводят, учитывая конкретное состояние зерна при влажности.
Прежде всего, влажность зерна определяется отдельно от примесей, поскольку влажность разных культур отличается друг от друга.

Рекомендуем прочесть:  Как Быстро Извлечь Косточки Из Плодов Кизила

Влага в зерне может быть:
• механически связанной (иначе называется свободной);
• физико-химически связанной;
• химически связанной.

Свободная вода удаляется из зерновой массы легче всего. Если хранение зерновой массы организовано правильно, капельножидкой влаги в ней быть не должно. Избыточное количество влаги может образоваться при резких температурных перепадах или попасть в зерновую массу при неисправных стенах, крыше хранилища, т.е. в результате нарушения правил хранения.
Внутри самого зерна вода влияет на физические, химические, биологические свойства зерна, которые определяют его ценность. Выделить химически связанную воду можно, только нарушив структуру белков, жиров, углеводов, в состав которых она входит. Молекулы такой воды уже не обладают свойствами растворителя, поскольку связаны с гидрофильными веществами. Удаление связанной воды приводит к изменению технологических особенностей зерна.

Оценка содержания влаги

Чтобы определить влажность зерна, используют следующую градацию:

• сухое зерно;
• средней сухости;
• влажное;
• сырое.

Эти оценки имеют разное выражение в зависимости от культуры. Для семян бобовых культур этот показатель больше среднего, а для масличных, напротив, меньше.
Разница в показателях объясняется химическим составом и анатомическим строением культуры. Так, масличные содержат большое количество жира, не удерживающего воду. Поэтому вода в подсолнечнике, клещевине и других культурах удерживается в больших количествах в гидрофильной части зерна и активизирует биохимические процессы.

Критическая влажность зерна
В очень сухом зерне интенсивность дыхания крайне низкая. Наоборот, сырое зерно, если оно не охлаждено, имеет свободный доступ воздуха, активно дышит, теряя до 0,2% сухого вещества в сутки.
Уровень влажности, при котором в зерне возникает свободная влага, а также резко увеличивается интенсивность дыхания, называют критической. Ее величины различны для каждого конкретного вида культуры.

• Бобовые (горох, фасоль, чечевица) – 16%
• Рожь, ячмень, пшеница – 15 – 15,5%
• Сорго, просо, кукуруза – 13 – 14%
• Среднемасличный подсолнечник – 10%
• Высокомасличный подсолнечник – 7 – 8%

Для основных злаковых культур приемлемой обычно считается влажность до 14%. При такой влажности зерно можно хранить в насыпи высотой до 30м и более.
Средне-сухое зерно дышит уже в 2 – 3 раза интенсивнее, чем сухое, однако имеет малый газообмен, поэтому хранится достаточно хорошо. Влажное зерно дышит в 5 – 8 раз активнее, чем сухое, сырое зерно – в 20 – 30 раз интенсивнее сухого.
Имея влажность ниже на 2 – 3% от критического покзателя, зерновая масса долго сохраняет всхожесть, если обеспечено достаточное количество кислорода. Если кислорода не хватает, зерно теряет посевные свойства в первые месяцы хранения.

Методы определения влажности
Влажность зерна может определяться прямыми и косвенными методами. Когда зерно поступает на хлебоприемные пункты, требуется быстро определить, куда направлять партию: на длительное хранение в силос элеватора, в склад активного вентилирования, в зерносушилку.

Использование электровлагомера.
Определение влажности с помощью электровлагомера – экспресс-метод, который позволяет провести анализ в течение нескольких минут. Он основан на электропроводности зерна, которая зависит от содержания в нем влаги. Сухое зерно имеет свойства диэлектрика, во влажном состоянии оно становится полупроводником.
Для измерения влажности применяется прибор ЦВЗ-3. В нем зерно попадает в пространство между электродами, по которому пропускается электрический ток. Уже через 3 – 5 минут на цифровом табло прибора сразу показывается влажность зерна в процентах. Большое преимущество метода – высокая скорость. Однако, по точности он заметно уступает стандартному способу определения влажности. Показатели электропроводности могут измениться из-за нескольких факторов: температуры зерна и пространства между зернами, наличия примесей, химического состава культуры. Влияние этих факторов учитывается в электровлагомере, где в зависимости от названных показателей меняется код и режим работы.

Основной стандартный метод
Излишняя влажность зерна чаще всего устраняется с помощью обезвоживания в воздушно-тепловом шкафу. Температура и продолжительность сушки при этом способе фиксированы. После просушивания определяются потери размолотого зерна.
Метод часто используется хлебоприемными, перерабатывающими предприятиями. Он проходит в несколько этапов:

• предварительное измерение влажности при помощи электровлагомера;
• сушка (при влажности более 17%);
• подготовка к работе эксикатора, бюксов, сушильного шкафа (СЭШ-3М);
• собственно измерение.

Определение влажности стандартным методом, без предварительной сушки.
Применяется для зерна с влажностью менее 17%. Предварительная влажность измеряется на электровлагомере. Затем для уточнения показателей влажность определяется с помощью гравиметрического метода.
1. За основу расчетов берутся ГОСТы, определяющие норму влажности крупы, муки, отрубей.
2. Навеска зерна (20 г) размалывается в течение 30 сек. на лабораторной мельнице. Измельченное таким образом зерно (шрот) помещается в банку с притертой пробкой и перемешивается.
3. Из пробы (разных мест) отбирается 2 навески массой 5 г (допускается погрешность в 0,01 г) и помещаются в 2 заранее взвешенные бюксы.
4. Бюксы ставят в открытом виде в сушильный шкаф, предварительно нагретый до 140° С. Затем температура убавляется до 130° С и оставляется на 40 мин. Это стандартное время для всех зерновых культур, кроме кукурузы. Молотое зерно кукурузы высушивается в течение 60 мин.
5. Из сушильного шкафа бюксы вынимаются щипцами и ставятся для охлаждения на 20 мин. в эксикатор.
6. Обе бюксы взвешивают. Значение влажности определяется по разности масс двух бюкс с зерновой навеской до высушивания и после. Из двух определений берется среднее арифметическое. Если разница между показателями из двух бюкс будет составлять более 0,2%, то анализ нужно повторить.

Определение влажности с предварительным подсушиванием.
Подсушивание необходимо для зерна, имеющего влажность выше, чем 17%.
1. На технических весах отвешивается зерно в количестве 20 г, помещается в бюксу диаметром 10 см. Зерно в бюксе подсушивается в сушильном шкафу при температуре 105° С в течение 8 – 12 мин.
2. Бюксы остужаются в течение 5 мин. и взвешиваются. После взвешивания зерно измельчается в течение 30 сек. на лабораторной мельнице, обезвоживается.
3. Влажность зерна измеряется по следующей формуле:
W = 100 — (mЗ — m4) * (ml — m2)
Здесь ml – это масса навески молотого зерна до высушивания, m2 – масса навески после высушивания, mЗ – масса навески целого зерна до высушивания, m4 – после высушивания.
При использовании предварительной просушки расхождение результатов между пробами из двух бюкс допускается не более 0,2% для зерновых культур, не более 0,7% – для кукурузы и бобовых.
Кроме перечисленных способов, влажность зерна определяется иными методами: химическими, дистиляционными, спектрально-оптическими, экстракционными.

Использование электровлагомера.
Определение влажности с помощью электровлагомера – экспресс-метод, который позволяет провести анализ в течение нескольких минут. Он основан на электропроводности зерна, которая зависит от содержания в нем влаги. Сухое зерно имеет свойства диэлектрика, во влажном состоянии оно становится полупроводником.
Для измерения влажности применяется прибор ЦВЗ-3. В нем зерно попадает в пространство между электродами, по которому пропускается электрический ток. Уже через 3 – 5 минут на цифровом табло прибора сразу показывается влажность зерна в процентах. Большое преимущество метода – высокая скорость. Однако, по точности он заметно уступает стандартному способу определения влажности. Показатели электропроводности могут измениться из-за нескольких факторов: температуры зерна и пространства между зернами, наличия примесей, химического состава культуры. Влияние этих факторов учитывается в электровлагомере, где в зависимости от названных показателей меняется код и режим работы.

Влажность зерна: допустимые нормы и особенности обеспечения необходимого уровня влажности

Для того чтобы оценить уровень качества зерна, существует множество критериев. Один из самых значимых показателей – влажность. Высокий уровень влаги способен нанести зерну непоправимый вред, такая среда активизирует рост бактерий и размножение вредителей.

Влажность отражает, насколько зерно питательное, а также срок хранения. Если уровень влаги слишком высок, это означает, что зерно не сможет долго храниться, а его питательные свойства весьма низкие. Зерно начинает быстрее прорастать и набухать, ферменты становятся наиболее активными. Повышенная влажность увеличивает опасность различных повреждений зерна. Если зерно долгое время находится во влажной среде, то его дальнейшая обработка становится невозможной. Даже если попытаться его очистить, это не восстановит должный уровень качества.

Влага в зерне может быть связанной и свободной. Для того, что бы повысить качественные показатели зерна, его необходимо просушить. Сушку можно проводить только после того, как будет определен уровень влажности отдельно. Проще всего избавиться от свободной влаги. Для того, чтобы эта влага вовсе не появилась, необходимо соблюдать условия хранения, в частности температурный режим, избегать резких перепадов. Помещение, где хранится зерно, должно быть надежным, стены и крыша в обязательном порядке проверяются на предмет течи.

С удалением химически связанной воды ситуация обстоит уже сложнее. Очищение зерна от такой влаги нарушает его структуру. Это повлияет и на качество, и на любой свойства зерновой культуры.

Для каждой отдельно взятой культуры оценка уровня влажности будет различной. Самый большой показатель имеют бобовые культуры. А самый наименьший показатель у масличных культур. Так как в них высокий процент жира, который никак не удерживает влагу.

Уровень влаги может достигать критических отметок, каждая из культур имеет свои показатели нормы. Это необходимо учитывать перед тем, как отправлять зерно на очищение. Критических показателей влажности лучше избегать, так как это делает зерно бесполезным, оно лишено всех своих необходимых свойств. Для поддержания высокого показателя качества, следить за влагой нужно с особым вниманием.

Влагу определяют двумя доступными способами – прямым и косвенным, для этого используются приборы- измерители влажности зерна , по-другому они называются влагомеры. Для косвенной методики определения необходимо выбрать влагомер зерна , действие которого основывается на проверке электропроводимости. Этот способ отличается быстротой действий, весь процесс занимает всего лишь несколько минут, что является его существенным достоинством. Но все же данная методика проигрывает остальным, так как ее показатели не являются особо точными.

Стандартный метод определения влаги подразумевает получение информации при помощи хлебосдатчиков. Перемолотое зерно обезвоживают, высушивая его в специальных аппаратах. После этого смотрят, сколько массы было потерянно. Для измерения уровня влажности часто используют специальные влагомеры. Этот аппарат применяются на начальных этапах проверки, если показатель будет превышен, то зерно в обязательном порядке подсушивают. Нормы рассматриваются по определенному ГОСТу, регламентирующему, какой процент влаги допусти в зерне. Если окажется, что содержание влаги превышено, оставлять зерно в таком состоянии не допускается, иначе оно полностью испортится. Необходимо подсушить зерно, но даже при этом способе, это может негативно отразиться на его качестве.

Уровень влаги может достигать критических отметок, каждая из культур имеет свои показатели нормы. Это необходимо учитывать перед тем, как отправлять зерно на очищение. Критических показателей влажности лучше избегать, так как это делает зерно бесполезным, оно лишено всех своих необходимых свойств. Для поддержания высокого показателя качества, следить за влагой нужно с особым вниманием.

Государственный стандарт пшеницы

Пшеницу в сельском хозяйстве разделяют на настоящую или селекционную, дикую или полбу. И дикая, и селекционная пшеница подразделяются по типу на твердую и мягкую. Каждая порода и подвид злаков имеет свои характеристики, химические и физические свойства зерна. Чтобы упорядочить показатели зерновых культур в России разработаны государственные стандарты для каждого типа злака.

Рекомендуем прочесть:  Когда Отбирать Чесночный Зубчики Для Посадки И Как Хранить

Виды пшеницы

Настоящая пшеница упругая и гибкая, с крепким стеблем и колосом. При обмолоте цветочные пленки отделяются от зерна быстро. Полба отличается хрупкой и ломкой соломиной, плотной структурой: при обмолоте пленки почти неотделимы от семени.

И селекционные, и дикие сорта подразделяют по качеству зерна, включая английскую и польскую пшеницу, на твердые и мягкие. Твердое зерно от мягкого отличается химическим составом, биохимическими свойствами и хлебопекарными качествами.

ГОСТы пшеничных семян, разработанные еще при СССР, постоянно пересматриваются и дополняются, чтобы соответствовать реальному времени и следить за постоянными работами по улучшению культуры. Все изменения и нововведения публикуются в ежегодном указателе национальных стандартов.

Действующий ГОСТ Р52554-2021 «Пшеница. Технические условия» дает рекомендации по ее выращиванию.

Основные положения стандарта описывают также внутренние типы, различающиеся по натуральным признакам. Значения классов пшеницы необходимы для определения и утверждения технологических и пищевых, товарных свойств. По изменяющимся показателям, таким как стекловидность или влажность семян, определяют подтипы культуры.

Классификация зерна

Классы пшеницы определяют по наихудшему значению после сортировки, очистки и просушки семян. В ГОСТе 93-53-90 предусмотрена товарная классификация культуры, которая характеризуется мукомольными и хлебопекарными свойствами

Для мягких сортов существует еще и условный 6 класс. Разделение по качеству и химическому составу необходимо для улучшения выработки муки и крупы с хорошим выходом.Классификация пшеницы в России предусматривает 5 классов для твердых сортов.

Мягкую пшеницу высшего и первых двух классов называют сильной и используют для выпечки сортов хлеба, для улучшения муки из слабого зерна. Если показатели пшеницы 3 класса выдают содержание клейковины выше 23%, то ее используют для выработки сортовой муки без примесей более сильных сортов. Пшеница 4 класс — это слабый по химическим и хлебопекарным свойствам злак. Мука из такого зерна обязательно требует добавления сильных сортов. Пшеница 5 класс — зерно, предназначенное для непродовольственных целей (корм скоту, производство кормов или переработка на глюкозу и т.д.).

2-4 классс твердой пшеницы определяют как мягкую 4 класса, если количество примеси семян других растений (в т.ч. и злаковых) выше 15%.

С 1995 года зерно 4 класса разделили на 2 дополнительные группы. Связано это с плохой урожайностью и кризисом в сельском хозяйстве. К первой группе относят семена с уровнем клейковины от 21 до 33%. Такие семена используют для производства сортовой муки. Вторая группа включает пшеничные семена с клейковиной от 18 до 21%, которые используют как фураж или для производства муки с добавлением сильных сортов.

Твердая пшеница больше используется для производства макаронных изделий, десертов и элитных сортов хлеба. Мягкая — для хлеба и хлебобулочных, кондитерских изделий.

Типы пшеницы

Существующие 5 типов пшеницы различаются:

  • Цветом: в зависимости от типа семена бывают от белого, то коричнево-красного оттенка;
  • Ботаническим подтипом.

Первые 4 вида имеют свои подвиды, включающие пшеничные семена, схожие оттенком и стекловидностью. Классификация зерна по натуральным признакам типов и подтипов также выделяет 5 групп. К 1 группе относят мягкую яровую пшеницу со стекловидностью:

  • Более 75% — зерно имеет темно-красную середину;
  • От 60 до 75% — середина семян красная;
  • До 60 от 40% — середина зерна бледно-красная;
  • Ниже 40% — середина с желтым оттенком.

2 группа яровой пшеницы включает 2 подтипа:

  1. Со стекловидностью свыше 70% и насыщенно-янтарной консистенцией;
  2. С янтарной и светло-янтарной консистенцией. Показатель стекловидности не регламентирован.

К 3 группе относятся все подтипы мягкой краснозерной озимой пшеницы, и для нее применяются те же характеристики, что и для 1 группы. 4 группа включает озимые сорта с белым цветом плодовой оболочки. 5 группа — только твердые озимые сорта.

В случаях, если уборка проводится раньше срока или при неправильном хранении, зерно может менять цвет. Это явление называется «обесцвеченность мучнистых зерен».

Качество зерна пшеницы

В соответствии с действующим ГОСТОм 13586,3-83 отбор проб зерна для оценки качества зерна производится из партии во время погрузки или разгрузки. Здоровое зерно пшеницы без плесени, следов грибка и спор, бактерий. Оно цельное, без сколов, трещин и других механических повреждений. Имеет ровную и гладкую поверхность цвета, соответствующего типу. Запах у пшеничных семян насыщенно-хлебный, без кислых, горьковатых или химических ноток.

Основной показатель, характеризующий классности зерна пшеницы и его пищевую ценность — протеин. Его содержание зависит от породы и вида злака, может доходить до 23%. Протеином богаче твердые сорта, а наибольшее количество белка содержат семена 1 класса. Минимум определен в 14%. Для 5 класса минимальное содержание белка — 10%.

В хлебопекарной отрасли большое значение имеет содержание клейковины. Она определяет упругость, эластичность и вкусовые качества хлеба. Для контроля клейковины применяют показатель ее массовой доли в зерне. Минимальное количество устанавливается только для первых 3 классов пшеницы. Для мягких сортов первого класса содержание клейковины — не ниже 32%, 2 класс пшеницы должен иметь не менее 28%, 3 — не менее 23%. Показатели для твердых сортов: 28%, 25% и 22% соответственно. Для 5 класса пшеницы как твердых, так и мягких пород уровень клейковины должен быть не менее 18%.

Стекловидность зерна влияет на мукомольные качества: выход муки высшего сорта и ее крупообразующие способности. По результатам анализа консистенции эндосперма пшеницу относят к стекловидной, частично стекловидной или мучнистой. Определение стекловидности подробно прописано в ГОСТе 10987-76. Он содержит перечень необходимо для анализа оборудования, дан точный вес навески — 50 г, максимальный показатель влажности — 17% и два метода проведения процедуры. Стекловидность определяют либо при помощи диафаноскопа, либо ручным способом.

За эталонный цвет каждого класса используется цвет здорового зерна типа или подтипа. Для первых четырех классов при определенных условиях допустима обесцвечиваемость первой степени. Фуражная пшеница не имеет регламентированного параметра цвета семян.

Для определения величины семян используется стандарт — масса 1000 зерен. Показатель зависит от величины семян, стадии зрелости и выполненности. Массу рассчитывают по ГОСТу 10842-89.

Показатель влажности связан с химическим составом: чем меньше в семенах воды, тем выше концентрация питательных веществ и пищевая ценность продукта. Влажность зерна определяется ГОСТом 29027. Метод определения влажности зерна состоит из отбора навески, ее обезвоживании и взвешивании до и после просушки. Дополнительно могут быть использованы влагомеры. Эти приборы способны определить влажность семени в диапазоне от 5 до 40%, а погрешность составляет менее 1,5%.

Состав зерновой партии

Пшеничные семена каждого сорта могут содержать примеси других сортовых видов. Для первых 4 классов яровой культуры мягких сортов установлен уровень примесей не более 5%, для 5 класса — до 15%. Для твердых яровых сортов установленный максимум — 5%. Если биологических растительных загрязнений больше, то пшеницу относят к смеси зерновых видов и указывают процентный состав каждого злака.

К основным семенам первых 4 классов относят цельные и поврежденные зерна, а также часть разбитых или изъеденных. Характер и размер повреждений зерна не влияет на его отношение к культурной или сорной примеси. В пшенице 5 класса допустимо наличие бобовых семян, не входящих в группу сорных примесей.

В сорную примесь входят:

  • Минеральная примесь: комочки земли, галька,;
  • Частицы растений, семена;
  • Потемневшие и пустые пшеничные зерна;
  • Споры головни, вязеля, спорыньи и т.д.;
  • Фузариозные семена.

Допустимый процент сорной примеси для первых 4 классов — не более 2. Для пятого класса — не более 5%. Не допускает зараженность пшеницы насекомыми, кроме клещей (но не выше второй степени). По санитарным требованиям недопустимо наличие в пшеничном сырье даже минимального количества пестицидов. Контроль установлен за гексахпорциклогексаном, ДДТ и их меболитами. Для каждой партии должен быть выписан сертификат с обязательным указанием содержания не только токсинов, но и микотоксинов, пестицидов. Допустимое количество пестицидов по ГОСТу 13586.1: метаболиты ДДТ — до 0,05 мг/кг, изомеры ГХЦГ — до 0,2 мг/кг.

Хранение и транспортировка

При перевозке и хранении учитывают состояние злака:

  • Влажность: сухость до 14%, средняя сухость — до 15,5%, влажное — до 17%, сырое — свыше 17%;
  • Сорная примесь: чистое зерно — менее 1% примесей, средней чистоты — до 3% примеси, свыше 3% — засоренное зерно.

При хранении необходимо обеспечить пшеничные семена защитой от вредителей — клещей, насекомых, мышей, птиц. Для борьбы с вредителями используется комплекс физических и механических мер: термическая обработка сырья, использование химических препаратов, звуковых или механических ловушек. Вредители зернохранилищ, в соответствии с санитарными нормами, обнаруживаются по механическому повреждению зерна, помету, запаху и прочим следам жизнедеятельности. Поврежденное зерно не соответствует стандарту и подлежит утилизации.

Качество пшеницы зависит от химических показателей и типа, влияет на хлебопекарные свойства муки и последующий вкус готово продукта.

Определение состава семян пшеницы происходит в лабораторных условиях при помощи специального анализа. По его результатам партию относят к одному из классов. Правила приемки и методы последующей обработки регулируются федеральным законом и прописаны в соответствующем ГОСТе.

Состояние пшеницы, поступившей на хранение или переработку, должно отвечать нормам: семена не должны содержать вредные примеси и зараженность грибками и бактериями. Цвет, запах, вес и массовая доля влаги обязательно должны быть в допустимых стандартом пределах. Если по одному из критериев зерно не соответствует стандарту — пробу отправляют на дополнительную проверку, по результатам которой принимают решение об утилизации или допуске к переработке.

При хранении необходимо обеспечить пшеничные семена защитой от вредителей — клещей, насекомых, мышей, птиц. Для борьбы с вредителями используется комплекс физических и механических мер: термическая обработка сырья, использование химических препаратов, звуковых или механических ловушек. Вредители зернохранилищ, в соответствии с санитарными нормами, обнаруживаются по механическому повреждению зерна, помету, запаху и прочим следам жизнедеятельности. Поврежденное зерно не соответствует стандарту и подлежит утилизации.

Мария
Рассказываю все тонкости хранения из своего опыта.
Оцените автора
Заготовки и их хранение в домашних условиях - MySadZagotovci.ру